

CT-5331 CANopen 主站模块

1 模块描述

CANopen 主站模块支持 1 路 CAN 接口,支持 CANopen 主站工作模式。

与适配器模块配套使用可实现 CANopen 协议转成其他协议,如: Modbus TCP、Profinet、EtherCAT、Ethernet/IP等,模块使用时需在 IO Config 软件中通过模块自带的 Type-C 接口配置输入输出指令。

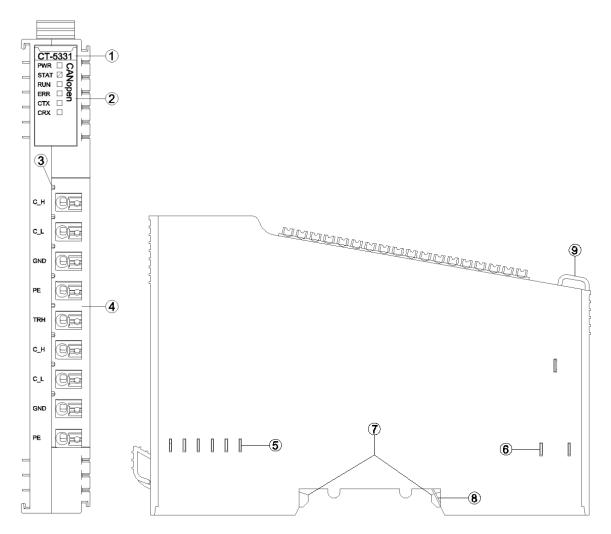
所有支持 CANopen 协议的从站设备都可以使用该模块实现与上层 PLC 或上位机的互连。如:CANopen 远程 IO 站、CANopen 各种传感器,CANopen 驱动器等。

2 技术参数

	通用参数								
功率	Max.50mA@5.0VDC								
隔离	I/O 至内部总线:光耦隔离(3KVrms)								
现场电源	供电: 19.2~28.8VDC(标称 24VDC)								
接线	I/O 接线: Max.1.0mm²(AWG 18)								
安装方式	35mm 导轨安装								
尺寸	115*14*75mm								
重量	65g								
	环境参数								
水平安装工作温度	-35°C~70°C								
垂直安装工作温度	-35°C~60°C								
相对湿度	5~95%RH 无冷凝								
存储温度	-40°C~85°C								
存储湿度	5~95%RH 无冷凝								
制造测试温度	-40°C∼75°C								
防护等级	IP20								
抗振性能	符合 IEC 61131-2、IEC 60068-2-6 标准								
抗冲击性能	符合 IEC 61131-2、 IEC 60068-2-27 标准								
EMC 性能	符合 IEC 61131-2、IEC 61000-4 标准								
	CAN 参数								
通道数	1 路								
接口	CAN								
协议	CANopen 符合 DS301 V4.02								
工作模式	CANopen 主站								
支持从站数	16 个站								
波特率	10K~1Mbps								
支持	PDO、SDO、Heartbeat、NMT、EMCY、网络扫描								
支持	自动分配 PDO 序号,默认禁止								
支持	自动分配 PDO COB-ID, 默认禁止								
支持	一键复位功能,恢复出厂设置								

▲警告

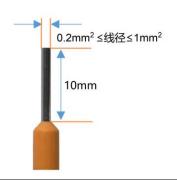
意外的设备操作


• 请勿超过环境和电气特性表中指定的任何额定值。

未按说明操作则设备提供的保护可能会失效,可能导致人身伤亡或设备损坏等严重 后果。

3 硬件接口

- ① 模块型号
- ② 状态指示灯
- ③ (无)
- ④ 接线端子和标识
- ⑤ 内部总线
- ⑥ 现场电源
- ⑦ 卡扣
- ⑧ 接地弹片
- ⑨ 线束固定



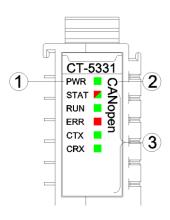
3.1 接线端子

端子	在 CAN 总线首、尾位置	在 CAN 总线中间位置				
C_H	CAN_H 信号线	CAN_H 信号线				
C_L	CAN_L 信号线	CAN_L 信号线				
GND	CAN 信号地	CAN 信号地				
PE	接地端子	接地端子				
TRH	内置终端电阻					
C_H	<u> </u>	CAN_H 信号线				
C_L		CAN_L 信号线				
GND	空	CAN 信号地				
PE		接地端子				

冷压端子端接时,应严格按照相应的端接规范或要求进行端接和查看,并按 对应的节点序号端接。导线需要采用铜导线且线芯大于 0.2mm²、小于 1mm²。冷 压端子参数参考如下:

▲警告

意外的设备操作


- 剥去导线绝缘层的长度大于 10mm 以保证信号可靠连接。
- 导线需要采用铜导线且线芯大于等于 0.2mm²、小于等于 1mm²,以保证信号可靠 连接。
- 冷压端子端接时,应严格按照相应的端接规范或要求进行端接和查看,并按对应 的节点序号端接。
- 冷压端子在未正确衔接或彻底锁紧前,禁止通电。

未按说明操作则设备提供的保护可能会失效,可能导致人身伤亡或设备损坏等严重 后果。

3.2 指示灯状态

PWR 电源指示灯(绿灯)	含义
亮	系统电源供电正常
灭	系统电源供电异常
STAT 模块状态指示灯(红绿灯)	含义
红色闪 2 次	模块异常已软重启
绿色常亮	运行模式
绿色单闪	停止模式
红绿交替闪烁(2.5Hz)	当前状态为升级模式
红绿交替闪烁(10Hz)	正在进行固件升级
RUN 运行状态指示灯(绿灯)	含义
闪烁(2Hz)	预操作状态
单闪	停止状态
常亮	操作状态
ERR 错误状态指示灯(红灯)	含义
单闪	CAN 错误帧达到警戒值
双闪	错误控制事件
常亮	总线关闭
熄灭	总线正常
CTX CAN 发送指示灯(绿灯)	含义
闪烁	CAN 在发送数据
熄灭	CAN 未发送数据
CRX CAN 接收指示灯(绿灯)	含义
闪烁	CAN 在接收数据
熄灭	CAN 未接收数据

▲警告

意外的设备操作

- 通过查看 PW 指示灯状态,判断模块供电状态。PW 绿灯常亮,供电正常,否则 会导致模块不能正常工作。
- 模块初始上电时,会有 3S 时间用于背板总线连接,背板总线初始化通过后 STA 是绿灯常亮状态, 若是 STA 处于绿灯闪烁状态, 表明背板总线初始化未通过, 需断 电重启,重新初始化。
- 模块正常运行过程中 STA 出现异常工作状态,请检查所有模块的固件版本信息, 详情咨询零点技术支持。
- 模块若是有升级操作时,在升级完成后,运行前需要检查所有的模块都在正常的 状态,否则会导致异常发生。

未按说明操作则设备提供的保护可能会失效,可能导致人身伤亡或设备损坏等严重 后果。

▲危险

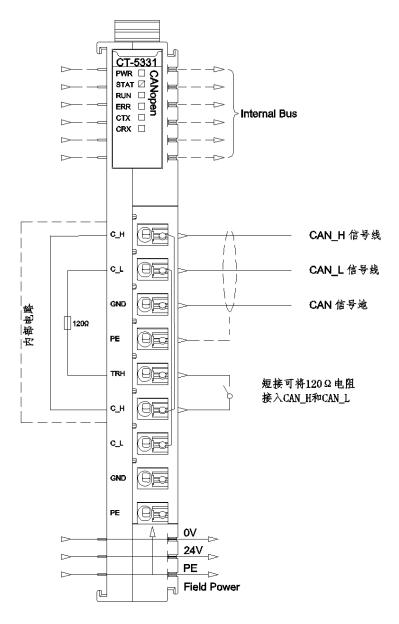
火灾危险

• 仅针对 I/O 通道和电源的最大电流容量使用正确的接线规则。

未按说明操作则设备提供的保护可能会失效,可能导致人身伤亡或设备损坏等严重 后果。

▲警告

意外的设备操作


• 请勿超过环境和电气特性表中指定的任何额定值。

未按说明操作则设备提供的保护可能会失效,可能导致人身伤亡或设备损坏等严重 后果。

4 接线图

模块CT-5331接在CAN总线首、尾位置

注意


设备无法操作

- 通道拆线时,请勿使用超过为此端子指定的最大按压力来压接弹簧端子,否则可能 破坏弹簧端子回弹力,影响端子回弹。
- 通道拆线时,请勿使用尖锐的工具按压弹簧端子,否则会损坏弹簧端子。

不遵循上述说明可能导致设备损坏。

模块CT-5331接在CAN总线中间位置

5 过程数据定义

5.1 模块过程数据定义

CT-5331模块本身无输入输出过程数据。

5.2 子模块过程数据映射

网络适配器通过内部总线对CT-5331的子模块输入输出过程数据进行实时读 取和写入。

6 配置参数定义

6.1 CT-5331 配置参数定义

				酉	记置参数							
Bit No	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Byte 0					Auto COB-ID	Auto PDO Number	Auto Start	CAN Mode				
Byte 1	Manager Node ID											
Byte 2	CAN Baud Rate											
Byte 3								SYNC ENAB LE				
Byte 4					SYNC CO	DID						
Byte 5					SINCCO	ыр						
Byte 6												
Byte 7					SYNC Cy	vo10						
Byte 8					SINCCY	CIE						
Byte 9												
Byte 10												
Byte 11				ςV	NC Windov	v I enoth						
Byte 12				51	ive willdow	v Length						
Byte 13												
Byte 14					Heartbeat 1	time						
Byte 15					Ticartocat							
Byte 16												
Byte 17			Co	ncume	r/Producer F	Heartbeat Ratio						
Byte 18				JIISUIIIC	1/1 Toducci 1	Tearrocar Natio						
Byte 19												
Byte 20 Byte 21					SDO time	out						

数据说明:

Working Mode: 模块工作模式。 (默认值: CANopen 主站)

Auto Start: 默认使能

Auto Generate PDO Nunber: 自动分配 PDO 序号, 使能、禁止可选,

(默认值: 使能)

Auto Generate PDO COB-ID: 自动分配 PDO COB-ID,使能、禁止可选,

(默认值: 使能)

Manager Node-ID: 管理器节点地址 (默认值: 127)

CAN BaudRate: CAN 波特率 (默认值: 125KBit/sec)

- 0: 1MBit/sec
- 1: 800 KBit/sec
- 2: 500 KBit/sec
- 3: 250 KBit/sec
- 4: 125 KBit/sec
- 5: 100 KBit/sec
- 6: 50 KBit/sec
- 7: 20 KBit/sec
- 8: 10 KBit/sec

SYNC Enable: 同步使能(默认: 禁止)

- 0: 禁止
- 1: 使能

SYNC COB-ID: 同步标识符(默认: 0x0800)

Communication Cycle Period (us): 同步周期 (us), 无符号的 32 位数 值可设, (默认: 0)

Synchronnous Windows Length(us): 同步窗口长度(us),无符号的 32 位 数值可设, (默认: 0)

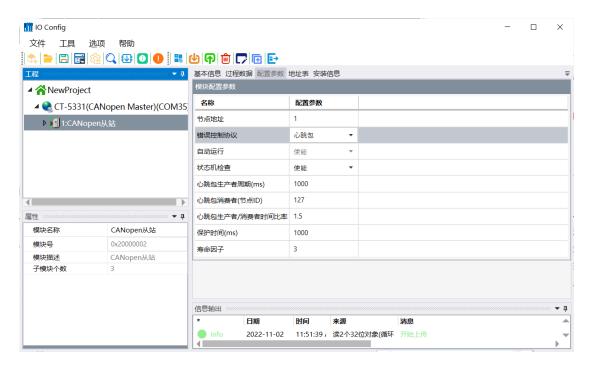
Manager Producer Heartbeat time(ms): 管理者心跳包周期(ms)0~65535 可设(默认: 1000)

Consumer/Producer Heartbeat Ratio: 心跳包消费者/生产者时间比率, 1.5~10 可设 (默认 1.5)

SDO Response Timeout: SDO 响应超时时间(ms): 主站发送命令后,等待 从站响应的时间。100~2000 可设(默认 500)。

6.2 CT-5331 子模块的参数定义

6.2.1 CANopen 从站


CT-5331 模块支持挂载 16 个 CANOPEN 从站设备,每个站默认 4 个 RPDO、4个TPDO。

6.2.1.1 CANopen 从站配置参数

				酉	己置参数	女							
Bit No	Bit 7	Bit 0											
Byte 0	CAN Node ID												
Byte 1			Auto Star	Error Control Protocol									
Byte 2 Byte 3	Producer Heartbeat Time(ms)												
Byte 4			C	onsume	r Heartl	beat Time Nod	e ID						
Byte 5													
Byte 6			C	ncume	r/Produ	cer Heartbeat F	Patio						
Byte 7			C	JIISUIIIC	1/1 10 u u	cci iicariocai i	Callo						
Byte 8													
Byte 9					Guard'	Timo(ms)							
Byte 10					Guaru	Time(ms)							
Byte 11]	Life Tin	ne FACtor							

CAN Node ID: 从站节点地址: 1-127 可设, 默认 1

Error Control Protocol:错误控制协议,心跳包、节点保护可选,默认心 跳包

Auto Star: 自动运行,默认使能

State MAChine Check: 状态机检查, 使能、禁止可选, 默认使能

Producer Heartbeat Time: 心跳包生产者周期(ms), 16 位无符号数据, 默 认 1000,

Consumer Heartbeat Time Node ID: 心跳包消费者(节点 ID),0-127 可设, 默认 127

Consumer/Producer Heartbeat Ratio: 心跳包消费者/生产者时间比率、1.5-10 可设, 默认 1.5

Guard Time: 保护时间(ms),16 位无符号数据,默认 1000,

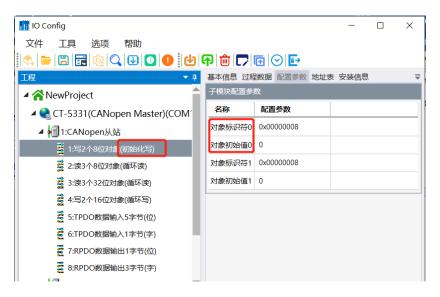
Life Time FACtor:寿命因子,8 位无符号数据,默认 3

6.2.1.2 CANopen 从站子模块

▲ CANopen从站子模块 ▶ ► SDO写8位对象(初始化写) ▶ > SDO写16位对象(初始化写) ▶ ► SDO写32位对象(初始化写) ▶ > SDO读8位对象(循环读) ▶ ► SDO读16位对象(循环读) ▶ ► SDO读32位对象(循环读) ▶ ► SDO写8位对象(循环写) ▶ ► SDO写16位对象(循环写) ▶ ► SDO写32位对象(循环写) ▷ TPDO数据输入(位变量) ▶ ☐ TPDO数据输入(字变量) ▷ TRPDO数据输出(位变量) ▷ TRPDO数据输出(字变量)

包含:

SDO 写 8 位对象(初始化写):包含写 1~8 个 8 位对象(初始化写) SDO 写 16 位对象 (初始化写): 包含写 1~8 个 16 位对象 (初始化写) SDO 写 32 位对象(初始化写):包含写 1~8 个 32 位对象(初始化写) SDO 读 8 位对象 (循环读): 包含读 1~8 个 8 位对象 (循环读) SDO 读 16 位对象(循环读):包含读 1~8 个 16 位对象(循环读) SDO 读 32 位对象(循环读):包含读 1~8 个 32 位对象(循环读) SDO 写 8 位对象(循环写):包含写 1~8 个 8 位对象(循环写) SDO 写 16 位对象(循环写):包含写 1~8 个 16 位对象(循环写) SDO 写 32 位对象(循环写):包含写 1~8 个 32 位对象(循环写) TPDO 数据输入(位变量):包含 TPDO 数据输入 1~8 字节(位) TPDO 数据输入(字变量):包含 TPDO 数据输入 1~8 字节(字) TPDO 数据输出(位变量):包含 RPDO 数据输入 1~8 字节(位) TPDO 数据输出(字变量):包含 RPDO 数据输入 1~8 字节(字)



1、SDO 初始化写指令配置参数包含:对象标识符(索引+子索引+数据长 度)以及对象初始值。

Object Identifier: 对象标识符, (索引+子索引+数据长度)

Object Initial Value: 对象初始值

2、SDO 循环读、循环写指令配置参数包含:扫描速度和对象标识符(索 引+子索引+数据长度)。

Scan Rate(ms): 扫描速度,默认 1000ms

Object Identifier: 对象标识符, (索引+子索引+数据长度)

3、TPDO 数据输入配置参数包含:

TPDO Number: TPDO1、TPDO2、TPDO3......TPDO64

PDO Enable: PDO 使能,使能、禁止可设,默认使能

COB-ID(HEX): 16#0x180+Node ID

Transmission Type: 传输类型,同步(非循环)、同步(循环)、事件驱 动(设备商协商)、事件驱动(设备子协议特定)可选,默认:事件驱动(设 备子协议特定)

Transmission Rate: 传输率, 8 位无符号数据, 默认: 1

Inhibit Time(100us): 禁止时间(100us), 16 位无符号数据, 默认: 10

Event Timer: 事件定时器(ms), 16 位无符号数据, 默认: 1000

Object Identifier: 对象标识符, (索引+子索引+数据长度)

4、RPDO 数据输出配置参数包含:

RPDO Number: RPDO1, RPDO2, RPDO3......RPDO64

PDO Enable: PDO 使能,使能、禁止可设,默认使能

COB-ID(HEX): 16#0x200+Node ID

Transmission Type: 传输类型,同步(非循环)、同步(循环)、事件驱 动(设备商协商)、事件驱动(设备子协议特定)可选,默认:事件驱动(设 备子协议特定)

Transmission Rate: 传输率, 8 位无符号数据, 默认: 1

Inhibit Time(100us): 禁止时间(100us),两个PDO传输的最小间隔时 间,16位无符号数据,默认:10

Event Timer: 事件定时器(ms), 16 位无符号数据, 默认: 1000

Object Identifier: 对象标识符, (索引+子索引+数据长度)

6.2.2 EMCY 控制模块

EMCY 控制模块配置参数: EMCY 覆写禁止、使能可选, 默认: 禁止 紧急报文由设备内部出现的致命错误触发,由相关应用设备已最高优先级 发送到其它设备。适用于中断类型的错误报警信号。

一个紧急报文由8字节组成,格式如下:

sender \rightarrow receiver(s)

COB-ID	Byte0-1	Byte2	Byte3-7
0x080+Node_ID	错误代码	错误寄存器 (对象 0x1001)	制造商特定的错误区域

16 进制的应急错误代码如下表 3-5 所示。应急错误代码中'xx'部分由相应 的设备子协议定义。

表 3-5 应急错误代码(16进制)

应急错误代码	代码功能描述
00xx	Error Reset 或 No Error
10xx	Generic Error
20xx	Current
21xx	Current, device input side
22xx	Current, inside the device
23xx	Current, device output side
30xx	Voltage
31xx	Mains voltage
32xx	Voltage inside the device
33xx	Output voltage
40xx	Temperature
41xx	Ambient temperature
42xx	Device tempearture
50xx	Device hardware
60xx	Device software
61xx	Internal software
62xx	User software
63xx	Data set
70xx	Additional modules

80xx	Monitoring							
81xx	communication							
8110	CAN overrun							
8120	Error Passive							
8130	Life Guard Error 或 Heartbeat Error 或 Heartbeat Error							
8140	Recovered from Bus-Off							
82xx	Protocol Error							
8210	PDO no processed Due to lenvgth error Due to length error							
8220	Length exceedd							
90xx	External error							
F0xx	Additional functions							
FFxx	Device specific							

错误寄存器(Error Register)在设备的对象字典(索引 0x1001)中,表 3-6 说 明了错误寄存器的位定义。设备可以将内部错误映射到这个状态字节中,并可 以快速查看当前错误。

表 3-6: 8 位错误寄存器位定义

Bit	错误类型
0	Generic
1	Current
2	Voltage
3	Temperature
4	Communication
5	Device profile specific
6	Reserved(=0)
7	ManufACturer specific

制造商特定错误区域可能包含与设备相关的其它的错误信息。紧急报文由 设备内部出现的致命错误触发,由相关应用设备已最高优先级发送到其它设 备。适用于中断类型的错误报警信号。

通过添加 EMCY 控制模块子模块来实现紧急报警工能。EMCY 控制模块数 据地址对应关系如下图:

字偏移	描述			高字	11											
	位	7	6	6 5			1	0	7	6	5	4	3	2	0	数据说明
0	状态字	EMCYDATA_Reset	Counter_Reset	Overflow_Reset	Overflow_Reset NonEmpty_Reset / Overflow NonEmpty / NodeID											
1	溢出计数		Overflow_Couter													
2	EMCY数据1				Error_Cod	Э										
3	EMCY数据2			Manufacture	_Data_0					Е	rro	r_R	egis	ter		
4	EMCY数据3			Manufacture	_Data_2					Man	ufa	ctu:	re_I	ata_:		
5	EMCY数据4			Manufacture	_Data_4					Man	ufa	ctu	re_I	ata_3		
0	扫描控制字	EMCYDATA_Reset	MCYDATA_Reset Counter_Reset Overflow_Reset NonEmpty_Reset / NodeID													

注:蓝色:反馈;绿色:可清零

控制流程:

- 1.等待输入位 NonEmpty 置 1,说明收到 1 条紧急报文。
- 2.读取紧急报文信息 NodeID, Error_Code, Error_Register,

ManufACture Data, 处理报警信息。

- 3.控制输出位 NonEmpty_Reset 上升沿来清除输入 NonEmpty 标志。
- 4.若输入位 Overflow 被置 1,表示当前有紧急报文被丢弃,

Overflow_Couter 表示了被丢弃的紧急报文数量。

5.控制输出位 Overflow_Reset, Counter_Reset 上升沿来清除输入 Overflow, Overflow_Couter。

6.可控制输出位 EMCYDATA_Reset 位上升沿来清除紧急报文信息 NodeID,Error_Code,Error_Register,ManufACture_Data。

6.2.3 NMT 网络管理

CANopen NMT 网络管理功能可通过对"系统控制区"中 NMT 控制域的读写 操作来实现,

NMT 命令字为网络管理控制命令,有效命令字取值如下:

0x01: 启动远程节点。

0x02: 停止远程节点。

0x80: 进入预操作状态。

0x81: 复位节点。

0x82: 复位通信。

写入其他的 NMT 命令值将会被忽略。触发位由 0 变成 1 时,将启动一次 NMT 命令的发送, NMT 从站地址为远程节点地址, 取值为 1-127,0 代表广播地 址。

NMT 状态包含当前网络中所有从站的当前状态(要获得有效的从站状态, 必须启动从站的错误控制功能 Node Guarding 或 Heartbeat),从站状态内容为 只读,写入任何值都将会被忽略,状态值对应的状态如"表 7"所示。初始化状 态表示主站收到该从站的 Boot-up 启动报文, 当主站查询从站状态超时或接收 从站心跳包超时时,表示从站离线,当收到从站的状态信息时,处于停止、操 作、预操作三种状态,当未收到任何从站状态信息时为未知状态。

表 7.从站状态列表

状态值	节点状态
0x00	初始化状态
0x01	离线状态
0x04	停止状态
0x05	操作状态
0x7F	预操作状态
0x0F	未知状态

通过添加 NMT 网络管理模块子模块来实现控制从站状态功能。NMT 网络 管理模块数据地址对应关系如下图:

数据方向	字偏移	描述				高气	字卡	ĵ				低字节								
		位	7	6	5	4	3	2	1	(0	7	6	5	4	3	2	1	0	数据说明
输入	0	NMT控制字			NM	IT命	7 令	字				0->1触发位 NodeID, 0代表广播地址			输出的NMT控制字反馈					
输出	0	NMT控制字			NM	IT命	j 🍫	字				0->1触发位	Nod	eΙΙ), ()代表	長广	播土	也址	NMT控制字

注:蓝色:数据反馈

控制流程:

- 1.NodeID 节点地址赋值,表示要操作的节点 ID,0 代表广播地址。
- 2.NMT 命令字赋值。
- 3.触发位 0->1 上升沿触发 NMT 命令发送。

6.2.3 SDO 控制模块

SDO 的在线读写功能可通过对"系统控制区"中 SDO 控制域的读写操作来 实现,其数据具体编码格式如"表9"所示。

描述 低字节 4 3 4 3 2 1 0 位 数据说明 索引 Index SubIndex 节点ID/子索引 SDO_Done SDO_Error 控制字 Abort_Code_2 Abort Code 3 中止代码 Abort_Code_1 Abort_Code_0 SDO数据1 SDO_Data_1 SDO数据16 SDO_Data_16 Index 索引 节点ID/子索引 NodeID 控制字 Trigger RW_Type SDO数据1 SDO_Data_1 SDO数据16 SDO_Data_16

表 9.SDO 控制寄存器编码格式

注:红色:只读:蓝色:反馈:橙色:条件反馈:绿色:可清零

对象索引 Index, 子索引 SubIndex 为将要访问的对象参数。SDO 服务器从 站号有效地址范围为 1-127。

中止代码 Abort_Code 的定义如"表 10"所示。

Abort_Code 中止代码	故障说明
0x06010001	试图读只写对象
0x06010002	试图写只读对象
0x06020000	对象字典中对象不存在
0x06040041	在索引处的 PDO 中不可映射数据
0x06070010	传入数据长度错误

表 10. 中止代码定义

0x06070012	数据太长
0x06070013	数据太短
0x06090011	对象字典中子索引不存在
0x06090030	写访问超出参数范围
0x06090031	值范围错误: 值过低
0x06090032	值范围错误: 值过高
0x05030000	触发位没有交替改变
0x05040000	传输超时
0x05040005	超出存储器范围
0x08000000	通用错误
0x08000021	本地控制错误

控制流程:

A:读流程

- 1.设置对象索引/子索引/节点地址信息 Index/SubIndex/NodeID。
- 2.设置 RW Type 为 0,表示 SDO 上传。
- 3.设置触发位 Trigger 上升沿,SDO 传输开始,SDO Busy 位被置 1。
- 4.用户等待 SDO Done 完成位置 1。
- 5.若 SDO 传输正常 SDO Error 和 Abort Code 为 0, Byte Len 中存储读取 的对象数据的字节长度,SDO_Data 中存储对象的值,有效字节长度为 Byte_Len o
- 6.若 SDO 传输失败 SDO Error 位被置 1, Abort Code 中存储了中止代码, 指示失败原因。Byte Len 及 SDO Data 被清空。
- 7.控制 Done Reset/Error Reset 位上升沿清除 SDO Done/SDO Error 标志 位,以便开始下一次传输。
 - 8.可以控制 Abort_Code_Reset 位上升沿来清除错误代码 Abort_Code。

B:写流程

- 1.设置对象索引/子索引/节点地址信息 Index/SubIndex/NodeID。
- 2.设置 RW Type 为 1,表示 SDO 下载,设置输出数据长度及输出数据值 Byte Len/SDO Data,输出值将反馈到对应的输入值中。
 - 3.设置触发位 Trigger 上升沿,SDO 传输开始,SDO Busy 位被置 1。
 - 4.用户等待 SDO_Done 完成位置 1。
 - 5.若 SDO 传输正常 SDO Error 和 Abort Code 为 0。
- 6.若 SDO 传输失败 SDO Error 位被置 1, Abort Code 中存储了中止代码, 指示失败原因。
- 7.控制 Done Reset/Error Reset 位上升沿清除 SDO Done/SDO Error 标志 位,以便开始下一次传输。
 - 8.可以控制 Abort Code Reset 位上升沿来清除错误代码 Abort Code。

6.2.3 网络扫描模块

支持扫描模块节点数包含:

网络扫描模块 8 个节点

网络扫描模块 16 个节点

网络扫描模块 32 个节点

网络扫描模块 64 个节点

网络扫描模块 126 个节点

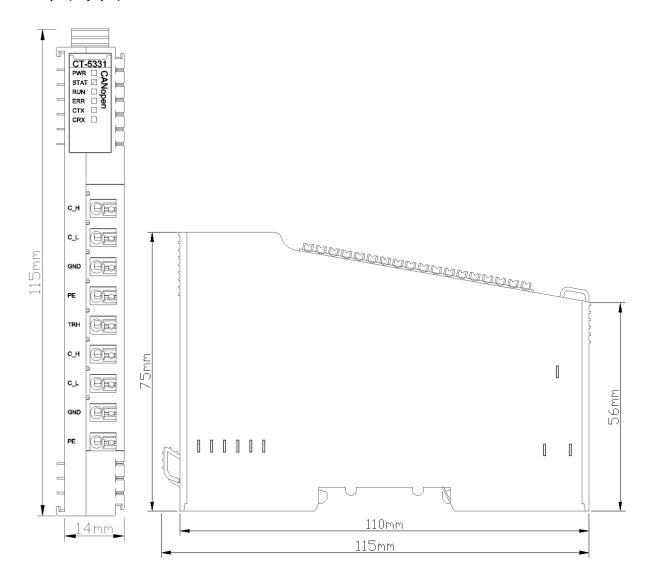
CANopen 网络上最大 127 个节点,网关本身占一个节点地址。通过网络扫 描功能可以初步扫描 CANopen 网络上的从站设备的基本情况。

通过添加网络扫描模块来实现网络扫描功能。网络扫描模块数据地址对应 关系如下图:

注:绿色:只读;蓝色:反馈

控制流程:

1.输出触发位 0->1 上升沿, 启动扫描。



- 2.扫描中状态为被置1,节点数量及模块信息全部清零。
- 3.等待扫描完成,扫描中状态位清零。
- 4.节点数量中存储当前网络扫描到的所有节点数量,模块信息中存储节点 ID 及节点状态机信息。

A 尺寸图

